Free Monadic Tarski and MMI3-Algebras

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Topological Duality for Tarski algebras

In this paper we will generalize the representation theory developed for nite Tarski algebras given in [7]. We will introduce the notion of Tarski space as a generalization of the notion of dense Tarski set, and we will prove that the category of Tarski algebras with semi-homomorphisms is dually equivalent to the category of Tarski spaces with certain closed relations, called T -relations. By t...

متن کامل

Monadic dynamic algebras

The main purpose of this work is to introduce the class of the monadic dynamic algebras (dynamic algebras with one quantifier). Similarly to a theorem of Kozen we establish that every separable monadic dynamic algebra is isomorphic to a monadic (possibly non-standard) Kripke structure. We also classify the simple (monadic) dynamic algebras. Moreover, in the dynamic duality theory, we analyze th...

متن کامل

Finite Monadic Algebras

Introduction. The elementary structure theory for finite Boolean algebras is, for our purposes, summarized in the following theorem, (see [1, p. 163], or [2, p. 344]). (*) If B is a finite Boolean algebra, then it is completely characterized by the number of its elements, a number which must be of the form 2", where n is the number of atoms of B. In this case B is faithfully represented as the ...

متن کامل

Monadic GMV-algebras

Monadic MV –algebras are an algebraic model of the predicate calculus of the Lukasiewicz infinite valued logic in which only a single individual variable occurs. GMV -algebras are a non-commutative generalization of MV -algebras and are an algebraic counterpart of the non-commutative Lukasiewicz infinite valued logic. We introduce monadic GMV -algebras and describe their connections to certain ...

متن کامل

Boolean Algebras, Tarski Invariants, and Index Sets

Tarski defined a way of assigning to each boolean algebra, B, an invariant inv(B) ∈ In, where In is a set of triples from N, such that two boolean algebras have the same invariant if and only if they are elementarily equivalent. Moreover, given the invariant of a boolean algebra, there is a computable procedure that decides its elementary theory. If we restrict our attention to dense Boolean al...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Demonstratio Mathematica

سال: 2014

ISSN: 2391-4661,0420-1213

DOI: 10.2478/dema-2014-0042